POLYNOMIAL FUNCTIONS - Prerequisite Skills **§1.0**

Function Notation

- \bullet The notation f(x) means that we have a function named f and the variable in that function

Examples:

1. Determine each value for the function f(x) = -5x - 9.

c)
$$f(-3x)$$

d)
$$f(m+1)$$

2. Determine each value for the function $f(x) = -x^2 + 4x - 3$.

Slope and Y-Intercept of a Line

- \diamondsuit Standard Form: Equations of the form Ax + By + C = 0
- ♦ Slope Intercept Form: Equations of the form y = mx + b
- To switch from standard form to slope intercept form means you need to solve for y.

Examples:

3. State the slope and the y-intercept of each line

a)
$$y = -4x - 1$$

b)
$$3y = 9x + 2$$

c)
$$2x - 4y + 12 = 0$$

c)
$$2x-4y+12=0$$
 d) $x+2y=6(x-1)$

Equation of a Line

To find the equation of a line you need the slope and y-intercept.

Examples:

- 4. Determine an equation for the line that satisfies the following conditions.
 - a) The slope is $\frac{2}{5}$ and the y-intercept is -2.
 - b) The slope is $\frac{1}{3}$ and the line passes through the point (6, -2).
 - c) The line passes through the points (-3, 4) and (2, -1).

Finite Differences

- Remember that the first set of finite differences for a linear function will be constant.
- Remember that the second set of finite differences for a quadratic function will be constant.

Examples:

5. Use finite differences to determine if each function is linear, quadratic, or neither.

	`
n	١
а	,

x	y
-2	0
-1	- 4
0	- 6
1	- 6
2	-4
3	0

b)

\boldsymbol{x}	y
-3	-28
-2	0
-1	10
0	8
1	0
2	-8

Domain and Range

- The **domain** of a function is the complete set of possible values of the independent variable in the function.
 - o In plain English, this definition means: The domain of a function is the set of all possible x values which will make the function "work" and will output real y-values.
 - o When finding the domain, remember:
 - The denominator (bottom) of a fraction cannot be zero.
 - The values under a square root sign must be positive.
- The **range** of a function is the complete set of all possible resulting values of the dependent variable of a function, after we have substituted the values in the domain.
 - In plain English, the definition means: The range of a function is the possible y values of a function that result when we substitute all the possible x-values into the function.
 - When finding the range, remember:
 - Substitute different x-values into the expression for y to see what is happening.
 - Make sure you look for minimum and maximum values of y.
 - Draw a sketch!

Examples:

6. State the domain and range of each function.

a)
$$y = -3(x-2)^2 - 1$$

b)
$$y = \sqrt{-3x - 4}$$

Quadratic Functions

- \Rightarrow Standard Form: $ax^2 + bx + c$, where $a \neq 0$
- \forall Vertex Form: $y = a(x h)^2 + k$, where $a \neq 0$
 - Vertex, V = (h, k)
 - o D: $\{x \in \Re\}$
 - R: $\{y \in \Re \mid y \le k\}$ when a < 0 OR R: $\{y \in \Re \mid y \ge k\}$ when a > 0
- \Rightarrow Factored Form: y = a(x s)(x r), where $a \neq 0$
 - \circ Zeroes: x = s and x = r

Examples:

7. Determine the equation of a quadratic function that has y-intercept 4 and x-intercepts -2 and 3.

8. Determine the x-intercepts, the vertex, the direction of opening, and the domain and range of each quadratic function. Then, graph each function.

a)
$$y = 3(x-1)^2 - 3$$

b)
$$y = (x - 2)(x + 4)$$

c)
$$y = -0.5(x+1)(x-5)$$

Transformations

- ♦ Shifting
 - o Given a function y = f(x) and a constant c > 0
 - y = f(x) + c shifts the graph up c units (add c to y-values)
 - y = f(x) c shifts the graph down c units (subtract c from y-values)
 - y = f(x + c) shifts the graph left c units (subtract c from x-values)
 - y = f(x c) shifts the graph right c units (add c to x-values)
- Stretching & Compressing
 - o Given a function y = f(x) and a constant c > 1
 - $y = c \cdot f(x)$ vertical stretch by a factor of c (multiply y-values by c)
 - $y = \frac{1}{c} \cdot f(x)$ vertical compress by a factor of $\frac{1}{c}$ (divide y-values by c)
 - $y = f(c \cdot x)$ horizontal compress by a factor of $\frac{1}{c}$ (divide x-values by c)
 - $y = f(\frac{1}{c} \cdot x)$ horizontal stretch by a factor of c (multiply x-values by c)
- ♥ Reflecting
 - o Given a function y = f(x)
 - y = -f(x) reflects graph about the x-axis (multiply all y values by -1)
 - y = f(-x) reflects graph about the y-axis (multiply all x values by -1)

Examples:

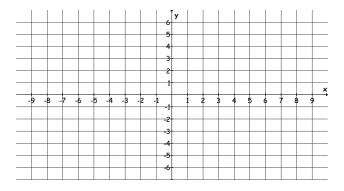
9. Describe each transformation that must be applied to the function y = f(x).

a)
$$y = 2f(x - 5)$$

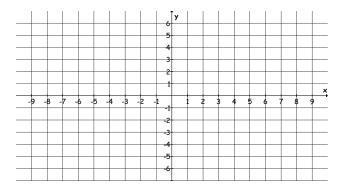
b)
$$y = f(x+1) - 4$$

c)
$$y = -f(3x) + 1$$

- 10. i) Write an equation for the transformed function of each base function.
 - ii) Sketch a graph of each function.
 - iii) State the domain and range of each function.
 - a) f(x) = x is compressed vertically by a factor of $\frac{1}{3}$, reflected in the x-axis and translated 4 units to the right.



b) $f(x) = x^2$ is stretched vertically by a factor of 3, compressed horizontally by a factor of $\frac{1}{2}$ and translated 6 units to the left and 5 units down.



11. Describe the transformation that must be applied to the base function $y = x^2$ to obtain the graph of the function

$$y = -\left(\frac{1}{2}x - 4\right)^2 + 3.$$